Redis原理解析
Redis原理解析
数据结构
动态字符串SDS
SDS简介
Redis中保存的Key是字符串, value往往是字符串或者字符串的集合. 可见字符串是Redis中最常用的一种数据结构
不过Redis没有直接使用C语言中的字符串,因为C语言字符串存在很多问题:
获取字符串长度的需要通过运算, 循环加计数器直到找到结尾标识符
非二进制安全, 不可以存在结尾特殊字符
\0不可修改, 保存在常量中

Redis构建了一种新的字符串结构,称为简单动态字符串(Simple Dynamic String),简称SDS。
例如,我们执行命令:
1 | :6379> set name ni9ne |
那么Redis将在底层创建两个SDS,其中一个是包含name的SDS,另一个是包含ni9ne的SDS。
底层实现
Redis是C语言实现的,其中SDS是一个结构体,源码如下

Redis提供了不同位的数据结构实现, 可存储 2^5 / 2^8 / 2^16 / 2^32 / 2^64 大小的字符串
例如,一个包含字符串name的sds结构如下:
1 | ------------------------------------------------ |
SDS扩容
SDS之所以叫做动态字符串,是因为它具备动态扩容的能力,例如给上面的SDS数据添加字符串 : ofyou
首先会申请新内存空间:
如果新字符串小于1M,则新空间为
扩展后字符串长度的两倍+1;如果新字符串大于1M,则新空间为
扩展后字符串长度+1M+1。称为内存预分配。避免用户态与内核态频繁切换, 预先分配内存空间
扩容后结构如下:
1 | ------------------------------------------------------------------------------------ |
优点:
获取字符串长度的时间复杂度为O(1)
支持动态扩容
减少内存分配次数
二进制安全
IntSet
IntSet简介
IntSet是Redis中set集合的一种实现方式,基于整数数组来实现,并且具备长度可变、有序等特征。
结构如下:

其中的encoding包含三种模式,表示存储的整数大小不同:

为了方便查找,Redis会将intset中所有的整数按照升序依次保存在contents数组中,结构如图:

1 | 现在,数组中每个数字都在int16_t的范围内,因此采用的编码方式是INTSET_ENC_INT16,每部分占用的字节大小为: |
IntSet升级
有一个intset,元素为{5,10,20},采用的编码是INTSET_ENC_INT16,则每个整数占2字节.
向该其中添加一个数字:50000,这个数字超出了int16_t的范围,intset会自动升级编码方式到合适的大小。
流程如下:

①升级编码为INTSET_ENC_INT32, 每个整数占4字节,并按照新的编码方式及元素个数扩容数组
②倒序依次将数组中的元素拷贝到扩容后的正确位置 (避免顺序覆盖原有数据)
③将待添加的元素放入数组末尾
④最后,将intset的encoding属性改为INTSET_ENC_INT32,将length属性改为4

IntSet新增流程
新增动作:

升级动作:

查找当前值角标:

1 | /* Search for the position of "value". Return 1 when the value was found and |
IntSet特点
Intset可以看做是特殊的整数数组,具备以下特点:
Redis会确保Intset中的元素唯一、有序
具备类型升级机制,可以节省内存空间
底层采用二分查找方式来查询
存储少量数据, 在数据量不多的情况下使用
Dict
Dict简介
Redis是一个键值型(Key-Value Pair)的数据库,我们可以根据键实现快速的增删改查。而键与值的映射关系正是通过Dict来实现的。
Dict由三部分组成,分别是:哈希表(DictHashTable)、哈希节点(DictEntry)、字典(Dict)
哈希表(DictHashTable)

哈希节点(DictEntry)

字典(Dict)

Dict添加键值对
当我们向Dict添加键值对时, Redis首先根据key计算出hash值(h), 然后利用 h & sizemask(相当于h mod size)来计算元素应该存储到数组中的哪个索引位置。
存储k1=v1,假设k1的哈希值h =1,则1&3 =1,因此k1=v1要存储到数组角标1位置。

再次添加k2=v2 , 使用头插法插入数据

Dict完整结构

type 和 privdata为私有数据, rehashidx 和 pauserehash 供Rehash使用, 实际数据存储于ht[2]
ht[1] 用于存储数据, ht[2] 用于rehash
Dict的扩容
Dict中的HashTable就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,链表过长,则查询效率会大大降低。
Dict在每次新增键值对时都会检查负载因子(LoadFactor = used/size), 满足以下两种情况时会触发哈希表扩容:
哈希表的 LoadFactor >= 1,并且服务器没有执行
BGSAVE或者BGREWRITEAOF等后台进程;哈希表的 LoadFactor > 5 ;

Dict的收缩
Dict除了扩容以外,每次删除元素时,也会对负载因子做检查,当LoadFactor < 0.1 时,会做哈希表收缩:



Dict的rehash
不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的size和sizemask变化,而key的查询与sizemask有关。因此必须对哈希表中的每一个key重新计算索引,插入新的哈希表,这个过程称为rehash。

①计算新hash表的size,值取决于当前要做的是扩容还是收缩:
如果是扩容,则新size为第一个大于等于
dict.ht[0].used + 1的2^n如果是收缩,则新size为第一个大于等于
dict.ht[0].used的2^n (不得小于4)
②按照新的size申请内存空间,创建dictht,并赋值给dict.ht[1]
③设置dict.rehashidx = 0,标示开始rehash
④将 dict.ht[0]中的每一个dictEntry都rehash到dict.ht[1]
1 | Dict的rehash并不是一次性完成的。 |
④每次执行新增、查询、修改、删除操作时,都检查一下dict.rehashidx是否大于-1,如果是则将dict.ht[0].table[rehashidx]的entry链表rehash到dict.ht[1],并且将rehashidx++。直至dict.ht[0]的所有数据都rehash到dict.ht[1]
⑤将dict.ht[1]赋值给dict.ht[0],给dict.ht[1]初始化为空哈希表,释放原来的dict.ht[0]的内存
⑥将rehashidx赋值为-1,代表rehash结束
⑦在rehash过程中,新增操作,则直接写入ht[1],查询、修改和删除则会在dict.ht[0]和dict.ht[1]依次查找并执行。这样可以确保ht[0]的数据只减不增,随着rehash最终为空
总结
Dict的结构:
类似HashTable,底层是数组加链表来解决哈希冲突
Dict包含两个哈希表,
ht[0]平常用,ht[1]用来rehash
Dict的伸缩:
当LoadFactor大于5或者LoadFactor大于1并且没有子进程任务时,Dict扩容
当LoadFactor小于0.1时,Dict收缩
扩容大小为第一个大于等于used + 1的2^n
收缩大小为第一个大于等于used 的2^n
Dict采用渐进式rehash,每次访问Dict时执行一次rehash
rehash时ht[0]只减不增,新增操作只在ht[1]执行,其它操作在两个哈希表
内存不连续, 内存浪费
ZipList
ZipList简介
ZipList 是一种特殊的“双端链表” ,由一系列特殊编码的连续内存块组成。可以在任意一端进行压入/弹出操作, 并且该操作的时间复杂度为 O(1)。具体的数据结构如下所示:

| 属性 | 类型 | 长度 | 用途 |
|---|---|---|---|
| zlbytes | uint32_t | 4 字节 | 记录整个压缩列表占用的内存字节数 |
| zltail | uint32_t | 4 字节 | 记录压缩列表表尾节点距离压缩列表的起始地址有多少字节, 通过这个偏移量,可以确定表尾节点的地址。 |
| zllen | uint16_t | 2 字节 | 记录了压缩列表包含的节点数量。 最大值为UINT16_MAX (65534), 如果超过这个值,此处会记录为65535, 但节点的真实数量需要遍历整个压缩列表才能计算得出。 |
| entry | 列表节点 | 不定 | 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。 |
| zlend | uint8_t | 1 字节 | 特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。 |
ZipListEntry
ZipList 中的Entry并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用16个字节,浪费内存。而是采用了下面的结构:

previous_entry_length:前一节点的长度,占1个或5个字节。
- 如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
- 如果前一节点的长度大于254字节,则采用5个字节来保存这个长度值,第一个字节为
0xfe,后四个字节才是真实长度数据
encoding:编码属性,记录content的数据类型(字符串还是整数)以及长度,占用1个、2个或5个字节
contents:负责保存节点的数据,可以是字符串或整数
ZipList中所有存储长度的数值均采用小端字节序,即低位字节在前,高位字节在后。例如:数值
0x1234,采用小端字节序后实际存储值为:0x3412
Encoding编码
ZipListEntry中的encoding编码分为字符串和整数两种:
字符串:如果encoding是以“00”、“01”或者“10”开头,则证明content是字符串
编码 编码长度 字符串大小 |00pppppp| 1 bytes <= 63 bytes |01pppppp|qqqqqqqq| 2 bytes <= 16383 bytes |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| 5 bytes <= 4294967295 bytes 例如,我们要保存字符串:“ab”和 “bc”, 储存结构为:

整数:如果encoding是以“11”开始,则证明content是整数,且encoding固定只占用1个字节
编码 编码长度 整数类型 11000000 1 int16_t(2 bytes) 11010000 1 int32_t(4 bytes) 11100000 1 int64_t(8 bytes) 11110000 1 24位有符整数(3 bytes) 11111110 1 8位有符整数(1 bytes) 1111xxxx 1 直接在xxxx位置保存数值, 范围从0001 1101, 减1后结果为实际值, 即012例如,一个ZipList中包含两个整数值:“2”和“5”

ZipList的连锁更新问题
ZipList的每个Entry都包含previous_entry_length来记录上一个节点的大小,长度是1个或5个字节:
如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
如果前一节点的长度大于等于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据
假设存在有N个连续的、长度为250~253字节之间的entry,因此entry的previous_entry_length属性用1个字节即可表示,如果在队首添加一个大于等于254字节的元素, 如图所示:

ZipList这种特殊情况下产生的连续多次空间扩展操作称之为连锁更新(Cascade Update)。新增、删除都可能导致连锁更新的发生。
总结
ZipList特性:
①压缩列表的可以看做一种连续内存空间的”双向链表”
②列表的节点之间不是通过指针连接,而是记录上一节点和本节点长度来寻址,内存占用较低
③如果列表数据过多,导致链表过长,可能影响查询性能, 所以长度有限制
④增或删较大数据时有可能发生连续更新问题
QuickList
QuickList引入
ZipList虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。为了缓解这个问题,我们必须限制ZipList的长度和entry大小。
但是要存储大量数据,超出了ZipList最佳的上限, 可以创建多个ZipList来分片存储数据。
数据拆分后比较分散,不方便管理和查找,这多个ZipList如何建立联系?Redis在3.2版本引入了新的数据结构QuickList,它是一个双端链表,只不过链表中的每个节点都是一个ZipList。

ZipList节点控制
为了避免QuickList中的每个ZipList中entry过多,Redis提供了一个配置项:list-max-ziplist-size来限制。
如果值为正,则代表ZipList的允许的entry个数的最大值
如果值为负,则代表ZipList的最大内存大小,分5种情况:
1
2
3
4
5
6-1:每个ZipList的内存占用不能超过4kb
-2:每个ZipList的内存占用不能超过8kb
-3:每个ZipList的内存占用不能超过16kb
-4:每个ZipList的内存占用不能超过32kb
-5:每个ZipList的内存占用不能超过64kb
其默认值为 -2:
除了控制ZipList的大小,QuickList还可以对节点的ZipList做压缩。通过配置项list-compress-depth来控制。因为链表一般都是从首尾访问较多,所以首尾是不压缩的。这个参数是控制首尾不压缩的节点个数:
1 | 0:特殊值,代表不压缩 |

底层实现


QuickList数据结构

SkipList
SkipList简介
SkipList(跳表)首先是链表,但与传统链表相比有几点差异:
元素按照升序排列存储
节点可能包含多个指针,指针跨度不同。
对比ZipList和QuickList, 查询中间节点数据性能较好, 不用逐个遍历元素

数据结构


总结
SkipList的特点:
跳跃表是一个双向链表,每个节点都包含score和ele值
节点按照score值排序,score值一样则按照ele字典排序
每个节点都可以包含多层指针,层数是1到32之间的随机数
不同层指针到下一个节点的跨度不同,层级越高,跨度越大
增删改查效率与红黑树基本一致,实现却更简单
RedisObject
Redis中的任意数据类型的键和值都会被封装为一个RedisObject,也叫做Redis对象,源码如下:

Redis中会根据存储的数据类型不同,选择不同的编码方式,共包含11种不同类型:
| 编号 | 编码方式 | 说明 |
|---|---|---|
| 0 | OBJ_ENCODING_RAW | raw编码动态字符串 |
| 1 | OBJ_ENCODING_INT | long类型的整数的字符串 |
| 2 | OBJ_ENCODING_HT | hash表(字典dict) |
| 3 | OBJ_ENCODING_ZIPMAP | 已废弃 |
| 4 | OBJ_ENCODING_LINKEDLIST | 双端链表 |
| 5 | OBJ_ENCODING_ZIPLIST | 压缩列表 |
| 6 | OBJ_ENCODING_INTSET | 整数集合 |
| 7 | OBJ_ENCODING_SKIPLIST | 跳表 |
| 8 | OBJ_ENCODING_EMBSTR | embstr的动态字符串 |
| 9 | OBJ_ENCODING_QUICKLIST | 快速列表 |
| 10 | OBJ_ENCODING_STREAM | Stream流 |
Redis中会根据存储的数据类型不同,选择不同的编码方式。每种数据类型的使用的编码方式如下:
| 数据类型 | 编码方式 |
|---|---|
| OBJ_STRING | int、embstr、raw |
| OBJ_LIST | LinkedList和ZipList(3.2以前)、QuickList(3.2以后) |
| OBJ_SET | intset、HT |
| OBJ_ZSET | ZipList、HT、SkipList |
| OBJ_HASH | ZipList、HT |
五种数据结构
String
String是Redis中最常见的数据存储类型:
其基本编码方式是RAW,基于简单动态字符串(SDS)实现,存储上限为512mb。

如果存储的SDS长度小于44字节,则会采用EMBSTR编码,此时object head与SDS是一段连续空间。申请内存时只需要调用一次内存分配函数,效率更高。

如果存储的字符串是整数值,并且大小在
LONG_MAX范围内,则会采用INT编码:直接将数据保存在RedisObject的ptr指针位置(刚好8字节),不再需要SDS了。

使用字符串格式数据时, 按照节省内存的逻辑, 尽量使用优先数字(int编码格式), 其次优先使用小于45个字符的字符串(embstr编码格式), 不推荐使用大字符串保存数据, 可能造成BigKey
List
Redis的List类型可以从首、尾操作列表中的元素, 满足该特征的数据结构有三种:
LinkedList :普通链表,可以从双端访问,内存占用较高,内存碎片较多
ZipList :压缩列表,可以从双端访问,连续内存空间, 内存占用低,存储上限低
QuickList:LinkedList + ZipList,可以从双端访问,内存占用较低,包含多个ZipList,存储上限高
在3.2版本之前,Redis采用ZipList和LinkedList来实现List,当元素数量小于512并且元素大小小于64字节时采用ZipList编码,超过则采用LinkedList编码。
在3.2版本之后,Redis统一采用QuickList来实现List:


内存图:

Set
Set是Redis中的单列集合,满足下列特点:
不保证有序性
保证元素唯一 (可以判断元素是否存在)
求交集、并集、差集
可以看出,Set对查询元素的效率要求非常高, 使用HashTable可以满足以上需求, 也就是Redis中的Dict,不过Dict是双列集合(可以存键、值对)
Set是Redis中的集合,不一定确保元素有序,可以满足元素唯一、查询效率要求极高。
为了查询效率和唯一性,set采用HT编码(Dict)。Dict中的key用来存储元素,value统一为null。
当存储的所有数据都是整数,并且元素数量不超过
set-max-intset-entries(默认值是512)时,Set会采用IntSet编码,以节省内存。
代码实现
创建:

添加元素


内存图

添加新数据变动:

Zset
ZSet也就是SortedSet,其中每一个元素都需要指定一个score值和member值, 需要实现:
可以根据score值排序后
member必须唯一
可以根据member查询分数
因此,zset底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。其中编码结构可以满足需求的有:
SkipList:可以排序,并且可以同时存储score和ele值(member)
HT(Dict):可以键值存储,并且可以根据key找value
代码实现
创建:

少量元素优化:
当元素数量不多时,HT和SkipList的优势不明显,而且更耗内存。因此zset还会采用仅ZipList结构来节省内存,不过需要同时满足两个条件:
①元素数量小于zset_max_ziplist_entries,默认值128
②每个元素都小于zset_max_ziplist_value字节,默认值64

添加元素:

排序实现
ziplist本身没有排序功能,而且没有键值对的概念,因此需要有zset通过编码实现:
ZipList是连续内存,因此score和element是紧挨在一起的两个entry, element在前,score在后
score越小越接近队首,score越大越接近队尾,按照score值升序排列

Hash
Hash结构与Redis中的Zset非常类似:
都是键值存储
都需求根据键获取值
键必须唯一
区别如下:
zset的键是member,值是score;hash的键和值都是任意值
zset要根据score排序;hash则无需排序
因此,Hash底层采用的编码与Zset也基本一致,只需要把排序有关的SkipList去掉即可:
Hash结构默认采用ZipList编码,用以节省内存。 ZipList中相邻的两个entry 分别保存field和value
当数据量较大时,Hash结构会转为HT编码,也就是Dict,触发条件有两个:
① ZipList中的元素数量超过了
hash-max-ziplist-entries(默认512)② ZipList中的任意entry大小超过了
hash-max-ziplist-value(默认64字节)

代码实现:

网络模型
用户空间和内核空间
任何Linux发行版,其系统内核都是Linux。我们的应用都需要通过Linux内核与硬件交互。

为了避免用户应用导致冲突甚至内核崩溃,用户应用与内核是分离的:
进程的寻址空间会划分为两部分:内核空间、用户空间
用户空间只能执行受限的命令(Ring3),而且不能直接调用系统资源,必须通过内核提供的接口来访问
内核空间可以执行特权命令(Ring0),调用一切系统资源

Linux系统为了提高IO效率,会在用户空间和内核空间都加入缓冲区:
写数据时,要把用户缓冲数据拷贝到内核缓冲区,然后写入设备
读数据时,要从设备读取数据到内核缓冲区,然后拷贝到用户缓冲区

五种IO模型
在《UNIX网络编程》一书中,总结归纳了5种IO模型:
阻塞IO(Blocking IO)
非阻塞IO(Nonblocking IO)
IO多路复用(IO Multiplexing)
信号驱动IO(Signal Driven IO)
异步IO(Asynchronous IO)

阻塞IO
顾名思义,阻塞IO就是两个阶段都必须阻塞等待:

阶段一:
①用户进程尝试读取数据(比如网卡数据)
②此时数据尚未到达,内核需要等待数据
③此时用户进程也处于阻塞状态
阶段二:
①数据到达并拷贝到内核缓冲区,代表已就绪
②将内核数据拷贝到用户缓冲区
③拷贝过程中,用户进程依然阻塞等待
④拷贝完成,用户进程解除阻塞,处理数据
可以看到,阻塞IO模型中,用户进程在两个阶段都是阻塞状态。
非阻塞IO
顾名思义,非阻塞IO的recvfrom操作会立即返回结果而不是阻塞用户进程。

阶段一:
①用户进程尝试读取数据(比如网卡数据)
②此时数据尚未到达,内核需要等待数据
③返回异常给用户进程
④用户进程拿到error后,再次尝试读取
⑤循环往复,直到数据就绪
阶段二:
①将内核数据拷贝到用户缓冲区
②拷贝过程中,用户进程依然阻塞等待
③拷贝完成,用户进程解除阻塞,处理数据
可以看到,非阻塞IO模型中,用户进程在第一个阶段是非阻塞,第二个阶段是阻塞状态。虽然是非阻塞,但性能并没有得到提高。而且忙等机制会导致CPU空转,CPU使用率暴增。
IO多路复用
无论是阻塞IO还是非阻塞IO,用户应用在一阶段都需要调用recvfrom来获取数据,差别在于无数据时的处理方案:
如果调用
recvfrom时,恰好没有数据,阻塞IO会使CPU阻塞,非阻塞IO使CPU空转,都不能充分发挥CPU的作用。如果调用
recvfrom时,恰好有数据,则用户进程可以直接进入第二阶段,读取并处理数据
而在单线程情况下,只能依次处理IO事件,如果正在处理的IO事件恰好未就绪(数据不可读或不可写),线程就会被阻塞,所有IO事件都必须等待,性能自然会很差。
1 | 就比如服务员给顾客点餐,分两步: |
文件描述符(File Descriptor):简称FD,是一个从0 开始的无符号整数,用来关联Linux中的一个文件。在Linux中,一切皆文件,例如常规文件、视频、硬件设备等,当然也包括网络套接字(Socket)。
IO多路复用:是利用单个线程来同时监听多个FD,并在某个FD可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。

阶段一:
①用户进程调用select,指定要监听的FD集合
②内核监听FD对应的多个socket
③任意一个或多个socket数据就绪则返回readable
④此过程中用户进程阻塞
阶段二:
①用户进程找到就绪的socket
②依次调用
recvfrom读取数据③内核将数据拷贝到用户空间
④用户进程处理数据
1 | IO多路复用是利用单个线程来同时监听多个FD,不过监听FD的方式、通知的方式又有多种实现,常见的有: |
IO多路复用-select
select是Linux最早的I/O多路复用技术:


select模式存在的问题:
需要将整个
fd_set从用户空间拷贝到内核空间,select结束还要再次拷贝回用户空间select无法得知具体是哪个fd就绪,需要遍历整个fd_setfd_set监听的fd数量不能超过1024
IO多路复用-poll
poll模式对select模式做了简单改进,但性能提升不明显,部分关键代码如下:

IO流程:
①创建
pollfd数组,向其中添加关注的fd信息,数组大小自定义②调用
poll函数,将pollfd数组拷贝到内核空间,转链表存储,无上限③内核遍历
fd,判断是否就绪④数据就绪或超时后,拷贝
pollfd数组到用户空间,返回就绪fd数量n⑤用户进程判断
n是否大于0⑥大于0则遍历
pollfd数组,找到就绪的fd
与select对比:
select模式中的
fd_set大小固定为1024,而pollfd在内核中采用链表,理论上无上限监听FD越多,每次遍历消耗时间也越久,性能反而会下降
IO多路复用-epoll
epoll模式是对select和poll的改进,它提供了三个函数:


1 | select模式存在的三个问题: |
IO多路复用-事件通知机制
当FD有数据可读时,我们调用epoll_wait(或者select、poll)可以得到通知。但是事件通知的模式有两种:
LevelTriggered:简称LT,也叫做水平触发。只要某个
FD中有数据可读,每次调用epoll_wait都会得到通知。EdgeTriggered:简称ET,也叫做边沿触发。只有在某个
FD有状态变化时,调用epoll_wait才会被通知。
举个例子:
①假设一个客户端socket对应的FD已经注册到了epoll实例中
②客户端socket发送了2kb的数据
③服务端调用epoll_wait,得到通知说FD就绪
④服务端从FD读取了1kb数据
⑤回到步骤3(再次调用epoll_wait,形成循环)
结果:
如果采用LT模式,因为
FD中仍有1kb数据,则第⑤步依然会返回结果,并且得到通知如果采用ET模式,因为第③步已经消费了
FD可读事件,第⑤步FD状态没有变化,因此epoll_wait不会返回,数据无法读取,客户端响应超时。
结论:
LT:事件通知频率较高,会有重复通知,影响性能
ET:仅通知一次,效率高。可以基于非阻塞IO循环读取解决数据读取不完整问题
select和poll仅支持LT模式,epoll可以自由选择LT和ET两种模式
IO多路复用-web服务流程
基于epoll模式的web服务的基本流程如图:

信号驱动IO
信号驱动IO是与内核建立SIGIO的信号关联并设置回调,当内核有FD就绪时,会发出SIGIO信号通知用户,期间用户应用可以执行其它业务,无需阻塞等待。

阶段一:
①用户进程调用
sigaction,注册信号处理函数②内核返回成功,开始监听
FD③用户进程不阻塞等待,可以执行其它业务
④当内核数据就绪后,回调用户进程的
SIGIO处理函数
阶段二:
①收到
SIGIO回调信号②调用
recvfrom,读取③内核将数据拷贝到用户空间
④用户进程处理数据
当有大量IO操作时,信号较多,SIGIO处理函数不能及时处理可能导致信号队列溢出,而且内核空间与用户空间的频繁信号交互性能也较低。
异步IO
异步IO的整个过程都是非阻塞的,用户进程调用完异步API后就可以去做其它事情,内核等待数据就绪并拷贝到用户空间后才会递交信号,通知用户进程。

阶段一:
①用户进程调用
aio_read,创建信号回调函数②内核等待数据就绪
③用户进程无需阻塞,可以做任何事情
阶段二:
①内核数据就绪
②内核数据拷贝到用户缓冲区
③拷贝完成,内核递交信号触发
aio_read中的回调函数④用户进程处理数据
可以看到,异步IO模型中,用户进程在两个阶段都是非阻塞状态。
但在大并发情况下, 内核积存的IO处理可能崩溃, 所以需要应用并发限流, 造成代码复杂度升高
同步和异步判断
IO操作是同步还是异步,关键看数据在内核空间与用户空间的拷贝过程(数据读写的IO操作),也就是阶段二是同步还是异步:

Redis网络模型
Redis到底是单线程还是多线程
如果仅仅是Redis的核心业务部分(命令处理),是单线程
如果是整个Redis,那么就是多线程
在Redis版本迭代过程中,在两个重要的时间节点上引入了多线程的支持:
Redis v4.0:引入多线程异步处理一些耗时较旧的任务,例如异步删除命令
unlinkRedis v6.0:在核心网络模型中引入 多线程,进一步提高对于多核CPU的利用率
因此,对于Redis的核心网络模型,在Redis 6.0之前确实都是单线程。是利用epoll(Linux系统)这样的IO多路复用技术在事件循环中不断处理客户端情况。
为什么Redis要选择单线程
抛开持久化不谈,Redis是纯内存操作,执行速度非常快,它的性能瓶颈是网络延迟而不是执行速度,因此多线程并不会带来巨大的性能提升。
多线程会导致过多的上下文切换,带来不必要的开销
引入多线程会面临线程安全问题,必然要引入线程锁这样的安全手段,实现复杂度增高,而且性能也会大打折扣
事件API库 AE
Redis通过IO多路复用来提高网络性能,并且支持各种不同的多路复用实现,并且将这些实现进行封装, 提供了统一的高性能事件库API库 AE:

Redis单线程网络模型的流程


beforSleep代码

readQueryFromClient代码

Redis多线程应用
Redis 6.0版本中引入了多线程,目的是为了提高IO读写效率。因此在解析客户端命令、写响应结果时采用了多线程。核心的命令执行、IO多路复用模块依然是由主线程执行。

通信协议
RESP协议
Redis是一个CS架构的软件,通信一般分两步(不包括pipeline和PubSub):
①客户端(client)向服务端(server)发送一条命令
②服务端解析并执行命令,返回响应结果给客户端
因此客户端发送命令的格式、服务端响应结果的格式必须有一个规范,这个规范就是通信协议。
而在Redis中采用的是RESP(Redis Serialization Protocol)协议:
Redis 1.2版本引入了RESP协议
Redis 2.0版本中成为与Redis服务端通信的标准,称为RESP2
Redis 6.0版本中,从RESP2升级到了RESP3协议,增加了更多数据类型并且支持6.0的新特性–客户端缓存
但目前,默认使用的依然是RESP2协议(简称RESP)。
RESP协议-数据类型
在RESP中,通过首字节的字符来区分不同数据类型,常用的数据类型包括5种:
单行字符串:首字节是 ‘
+’ ,后面跟上单行字符串,以CRLF( “\r\n“ )结尾。例如返回”
OK“: “+OK\r\n“错误(Errors):首字节是 ‘
-’ ,与单行字符串格式一样,只是字符串是异常信息例如:”
-Error message\r\n“数值:首字节是 ‘
:’ ,后面跟上数字格式的字符串,以CRLF结尾。例如:”
:10\r\n“多行字符串:首字节是 ‘
$’ ,表示二进制安全的字符串,最大支持512MB:- 如果大小为0,则代表空字符串:”
$0\r\n\r\n“ - 如果大小为-1,则代表不存在:”
$-1\r\n“

- 如果大小为0,则代表空字符串:”
数组:首字节是 ‘
*’,后面跟上数组元素个数,再跟上元素,元素数据类型不限:
使用socket模拟Redis-cli
1 |
内存策略
Redis之所以性能强,最主要的原因就是基于内存存储。然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。
我们可以通过修改配置文件来设置Redis的最大内存:
1 | # 格式: |
当内存使用达到上限时,就无法存储更多数据了。为了解决这个问题,Redis提供了一些策略实现内存回收:
内存过期策略
内存淘汰策略
过期策略
可以通过expire命令给Redis的key设置TTL(存活时间):

当key的TTL到期以后,再次访问name返回的是nil,说明这个key已经不存在了,对应的内存也得到释放。从而起到内存回收的目的。
过期策略-DB结构
Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都保存在Dict结构中。不过在其database结构体中,有两个Dict:一个用来记录key-value(dict);另一个用来记录key-TTL(expires)。

redisDb内存图如下:

即Redis是通过key所在redisDb中expires包含TTL数据确定过期与否
过期策略-过期删除
Redis的过期删除是通过结合使用惰性删除和周期删除完成的
惰性删除
惰性删除:顾名思义并不是在TTL到期后就立刻删除,而是在访问一个key的时候,检查该key的存活时间,如果已经过期才执行删除。

周期删除.
周期删除:顾名思义是通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。执行周期有两种:
Redis服务初始化函数
initServer()中设置定时任务serverCron,按照server.hz的频率来执行过期key清理,模式为SLOWSLOW模式规则:
1
2
3
4①执行频率受server.hz影响,默认为10,即每秒执行10次,每个执行周期100ms。
②执行清理耗时不超过一次执行周期的25%.默认slow模式耗时不超过25ms
③逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
④如果没达到时间上限(25ms)并且全局过期key比例大于10%,再进行一次抽样,否则结束Redis的每个事件循环前会调用
beforeSleep()函数,执行过期key清理,模式为FASTFAST模式规则(全局过期key比例小于10%不执行 ):
1
2
3
4①执行频率受beforeSleep()调用频率影响,但两次FAST模式间隔不低于2ms
②执行清理耗时不超过1ms
③逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
④如果没达到时间上限(1ms)并且过期key比例大于10%,再进行一次抽样,否则结束

淘汰策略
内存淘汰
内存淘汰:就是当Redis内存使用达到设置的上限时,主动挑选部分key删除以释放更多内存的流程。Redis会在每次处理客户端命令的方法processCommand()中尝试做内存淘汰:

八种淘汰策略

Redis支持8种不同策略来选择要删除的key:
noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略。
volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
allkeys-random:对全体key ,随机进行淘汰。也就是直接从db->dict中随机挑选
volatile-random:对设置了TTL的key ,随机进行淘汰。也就是从db->expires中随机挑选。
allkeys-lru: 对全体key,基于LRU算法进行淘汰
volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
allkeys-lfu: 对全体key,基于LFU算法进行淘汰
volatile-lfu: 对设置了TTL的key,基于LFI算法进行淘汰
比较容易混淆的有两个:
1 | - LRU(Least Recently Used),最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。 |
LRU/LFU淘汰原理
Redis的数据都会被封装为RedisObject结构:

LFU的访问次数之所以叫做逻辑访问次数,是因为并不是每次key被访问都计数,而是通过运算:
1 | ①生成0~1之间的随机数R |

淘汰策略流程
